The Crystal Structure of *a*-Copper Vanadate

J. R. REA* AND E. KOSTINER†

Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14850

Received July 6, 1972

The crystal structure of α -copper vanadate has been determined and refined by full-matrix least-squares procedures using automatic diffractometer data to a residual R = 0.050 ($R_w = 0.059$). The space group is rhombohedral, $R\overline{3}$, with hexagonal unit cell a = 12.857(3) and c = 7.161(2) Å ($a_R = 7.797(2)$ Å and $\alpha = 111.06(1)^\circ$). On the basis of the detailed structural analysis the contents Cu_{7-x}V₆O_{19-x} with x = 0.22 are proposed for the rhombohedral cell. Copper is in the divalent and vanadium in the quadrivalent state. The structure is based on a cubic close-packed array of oxygen ions with the vanadium ion occupying an octahedral site, one copper in a partially occupied octahedral site and the other copper in a tetrahedral site. The latter is one of the few examples of tetrahedrally coordinated copper.

Introduction

The preparation of "CuVO₃" was first reported as part of a study of the Cu-V-O system (1, 2). Recently (3), single crystals of α -copper vanadate (α denotes an ambient pressure phase) have been grown and electrical and magnetic data were reported. As part of a series of papers describing the crystal structures of CuVO₃ phases—CuVO₃(I) or Cu²⁺V⁴⁺O₃ (4) and CuVO₃(II) or Cu⁺V⁵⁺O₃ (5)—we now report the structure of α -copper vanadate.

Experimental Methods

Small single crystals of α -copper vanadate, prepared (3) by the hydrothermal reaction of Cu₂Cl₂ and NaVO₃ in a gold tube, were generously supplied by Professor B. L. Chamberland. An approximately rectangular prismatic crystal was selected; precession photographs confirmed the symmetry to be rhombohedral with possible space groups R3 or R3.

The lattice parameters were determined in a PICK-II least-squares refinement program, using 48 reflections within the angular range

* Present address: Mary Baldwin College, Staunton, VA.

[†] Author to whom correspondence should be addressed at Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT 06268. $35^{\circ} < |2\theta| < 47^{\circ}$; the reflections were automatically centered on a Picker FACS-I four-circle diffractometer using MoK α_1 radiation. At 22°C the lattice parameters for the triply primitive hexagonal unit cell are a = 12.857(3) and c = 7.161(2) Å; the parameters for the rhombohedral unit cell as $a_R = 7.797(2)$ Å and $\alpha = 111.06(1)^{\circ}$. The numbers in parentheses represent the standard deviations in the last reported number. These parameters are in excellent agreement with those derived from the refined powder diffraction data (3). The calculated density based on the stoichiometry Cu_{6.78}V₆O_{18.78} for the rhombohedral unit cell (*vide infra*) is 5.038 g/cm³ (V_R = 341.7 Å³).

Diffraction intensities were measured using Zr-filtered MoK α radiation at a takeoff angle of 2.5° with the diffractometer operating in the θ -2 θ scan mode. Scans were made at 1° per min over 1.9° with allowance for dispersion and with 40-sec background counts taken at both ends of the scan. Of the 742 independent data investigated in the angular range $2\theta < 62^\circ$, 178 were indiscernible on the recording chart monitor and were discarded as being unobservable, leaving 564 observed data. Three reflections were systematically monitored and no variations in intensities greater than 4% were observed over the entire data collection period. However, since the small changes which did occur could be corre-

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved.

lated with daily temperature changes, small corrections were made in the intensities on the basis of a series of linear functions. The maximum correction applied was 2.2%.

The intensity data were also corrected for Lorentz and polarization effects, and absorption corrections were made using a computer program written by N. W. Alcock and modified by B. Lee A reasonable model which does not require mixed valency (assuming Cu^{2+}) is $Cu_{7-x}V_6O_{19-x}$. With this in mind the refinement of the structure was carried out on two different stoichiometries: in one refinement a vanadium, V(0), was placed at the origin; in the other a copper, Cu(0), was placed at the origin and its occupancy was allowed to vary. The results were as follows:

	using V(0)		using Cu(0)
isotropic	R = 0.063	0.060	0.79(1) occupancy
refinement	$R_w = 0.073$	0.070	
anisotropic	R = 0.053	0.050	0.78(1) occupancy
refinement	$R_w = 0.062$	0.059	

for a crystal of general shape. Input for the program included the indices of the plane faces of the crystal, which were determined with the aid of precession photographs, and the orientation angles of the crystal coordinate system with respect to the diffractometer coordinate system, which were obtained from the program PICK-II. The maximum relative absorption correction applied was 54% of $|F_o|$. The uncertainty in the observed structure factor was defined as $\sigma_F =$ $0.02|F_o| + [C + k^2B]^{1/2}/2|F_o|Lp$, where C is the scan count, k is the ratio of scanning time to the total background count time, and B is the total background count.

All structural refinements (6) mentioned below employed a $1/\sigma^2$ weighting scheme, zerovalent scattering factors for Cu, V, and O (7), and corrections for secondary extinction (8) and anomalous dispersion.

Determination and Refinement of the Structure

Analysis of the Patterson map using the hexagonal unit cell assuming $R\bar{3}$ symmetry unambiguously revealed a copper atom and a vanadium atom, each on a general position. A difference Fourier synthesis using these two atoms indicated three oxygen atoms on general positions, one oxygen atom at the special position $00\frac{1}{2}$ (symmetry $\bar{3}$), and an additional heavy atom at special position 000 (symmetry $\bar{3}$). The intensity of the difference Fourier peak at the origin indicated a vanadium, making the stoichiometry $Cu_6V_7O_{19}$, which can be charge-balanced only by assuming mixed valency at one or both of the metal atoms. The hydrothermal preparation, however, does not suggest mixed valency. For the Cu(0) refinement the figure of merit decreased to 1.341 from its value of 1.416 for the V(0) refinement.

It was immediately noticed that the partial occupancy of 78% for Cu(0) corresponds approximately to full vanadium occupancy (0.78 \times 29 = 22.6; V = 23). Furthermore, the bond length from the atom in question to its six surrounding oxygens is 2.02 Å, which would be expected for six-coordinated V³⁺ (9). One could argue on this basis that there actually is a vanadium at the origin and that the lower R using Cu(0) is within the (indeterminate) error of the scattering factors used, or is due to truncation errors.

Two additional anisotropic refinements were carried out, one using Cu(0) and the other V(0), in which occupancies of all atoms were allowed to vary (holding the scale factor constant). In neither refinement did any oxygen occupancy decrease. However, if a deficiency of 0.22 oxygen atoms [matching the deficiency in Cu(0)] were spread over 19 atoms, the result would be undetectable within the error ($\sim 2\%$) of the occupancy factors. Hence Cu(0) cannot be ruled out on the basis of apparent full oxygen occupancy.

In the anisotropic refinement using V(0), the V(0) occupancy rose to 113%, whereas the occupancies of the two metals on general positions remained at 100\%. It is apparent from this and from the lower *R* using Cu(0) that the electron density at the origin is better described by the scattering factor for copper. For this reason and because a nonmixed valency model seems to be indicated, we propose the stoichiometry Cu_{6.78}V₆O_{18.78} for the crystal of α -copper vanadate examined.

TABLE I

OBSERVED AND CALCULATED STRUCTURE FACTORS

н	ĸ	ι	FUBS	FCAL	н	ĸ	L FOBS	FCAL	н	ĸ	L FO	US	FCAL	н	ĸ	LF	085	FCAL	н	ĸ	L	FODS	FCAL
-9	15	å	335	283	-5	2	4 837	824	-1	15 -	1 5	70	579	-2	1	•	738	677	-1	3	Z	1766	1730
-	ii.	-	442	476	-5	10	6 278	203	-4	15	5 4	63	376	-2	3	ž	479	452	-1	ŝ	í	652	447
-8	13	6	1026	1028	-5	11	5 566	600	-4	16	4 2	13	19	-2	6	11	566	1494	-1	4	4	477	445
-8 -8	14	5	462	435 469	-5 -5	11 12	8 408 1 2812	376 2686	-4	17 -	33	72 78	338 653	-2 -2	6 6	4 1	602	583 1807	-1	4	7 10	209	236
-8 -8	16	32	926 1025	831 1007	-5 -5	12	4 211 7 523	98 483	-3 -3	5 1	4 67	15 41	6710 776	-2	7	3	175	164	-1 -1	5	3	2930 508	2781 509
-8	18	ī	574	520	-5	13	0 395	398	-3	6	3 6	02	543	-2	Ż.	9 -1	915	984	-1	ş	6	729	644
-7	ij	ė	1306	1317	-5	14 -	1 569	593	-3	ě	9 5	64	475	-2	ě	5 1	058	1059	-1	6	-į	917	916
-1	14	ŝ	1528	1498	-5	14	5 374	449	-3	ź	5 5	43	493	-2	9	-2 .	654	666	-1	ě	5	501	398
-7	15 - 16	1	502 390	461 228	-5	15 -	2 780 1 216	744 248	-3	8	8 10	06 31	1014 912	-2	9	4	226	215	-1	ř	-2	306 839	253 859
-7	16 17	õ	412 205	409 92	-5 -5	16 -	3 38C 0 375	327 320	-3 -3	8 9	4 4 3	35 53	405 291	-2 -2	10	-3	445 824	466 812	-1	7	7	562 321	558 254
-7	17	3	379	338 571	-5	17	2 1025	974 525	-3	9	3 21	61 24	2155	-2	10	3	430	406	-1	8	- 3	350 6896	366
-6	7	8	467	373	-4	5	6 415	366	-3	10 .	1 3	82 04	374	-2	10		124	1130	-1	8	3	391	349
-6	10	5	1526	1559	-4	7	7 352	419	- ś	10	5 4	£1	459	-2	ii -	z	576	545	-1	ě	9	1285	1351
-0	11	4	766	789	-4	8	9 253	252	-3	11	4 9	48	958	-2	ii –	8	385	380	-1	ş	-1	494	461
-6	11	6	281 319	280 256	-4	9	2 2803 5 2159	2732 2155	-3	11	7 22	45	679	-2	12	-2 1	2351	2313	-1	9	2	520 493	516
-6	13 13	25	677 387	605 342	-4	10 10	1 582	550 1553	-3	12	3 5	12 18	472 349	-2	12	47	311 283	309 257	-1	9 10	-5	326 816	264 857
-6	14	1	797	777	-4	10	7 155	246	-3	13 -		39	889	-2	13	-3.	381	340	-1	10	-2	914	927
-6	15	ō	524	490	-4	ii .	6 408	382	-3	13	5 4	28	462	-2	13	3	288	179	-i	io	į	370	346
-0	15	6	275	310	-4	12	2 497	495	-3	14	1 8	20	765	-2	14	ż	493	450	-1	ii.	3	333	323
	10	-12	1606	1582	-4	13 -	1 1028	200 966	-3	15	0 2	31	209	-2	15	-2	651	641	-1	12	-1	1536	1487
-6	16	- 2	218	182	-4	13	4 2636 7 233	158	-3	10 -	-1 ż	16 48	292	-2	16	-3 0 1	863	349	-1	12	-z	540 718	525
-6	16	7	55B 1554	572 1475	-4	14 -	3 290	288 372	-3	17 -	-26 19	57 49	619 918	-2	16 17	-1	340 430	358 416	-1	14	-3	472	428 481
-5	7	6	632	632	-4	14	3 511	530 34	-2	3	4 9	79 08	953 2034	-1	2	3	165	1067	-1	14	3	2358	2409
-5	8	å	995	1010	-4	15 -	4 1206	1168	-2	3	10 3	97	320	-1	Z	9	712	618	-1	15	-1	352	297
-1	16	1	302	321	0	12 -	3 1075	1122	1	8	5 10	28	1012	2	6	5	535	463	3	+	5	1026	1056
ŏ	ĕ	6	1363	1258	ŏ	12	6 1094	1122	1		-2 7	63	793	2	7	-5 1	594	1651	3	\$	-2	2281	611 2476
ŏ	1	5	1237	1126	ŏ	13 -	1 1189	1148	i	10 -	-6 6	75	661	2	7	1	479	445	3	5	7	659	4760 654
õ	ž	8	673 427	605 503	0	13 14 -	2 798 2 3C0	755 193	1	10 -	-3 4	17 68	430 416	2	7	7 1	575	556 1736	3	6	-3	837 694	870 704
8	2	10	1970 3C8	1805	8	14	4 613 3 1248	571 1244	1	10 10	3 3	46 33	350 305	2	8	-6	660 400	6 B Q 3 2 7	3	6	6	635	664
ê	3	3	988 331	1018	0	16 -	1 580	61Z	1	11 -	4 25	64 81	2677	2	:	3	631	627	3	7	-4	364	340
Ő.	3	-1	534 1996	930	i	Ö.	7 544	478	Ĩ	ĨĨ.	2 2	22	243	ž	9	-7	595	374	3	ż	ż	1121	1105
õ	÷	2	2392	2316	į	į.	0 514	487	į	12 ·	-z -	49	942	ž	2	ż i	836	1865	3		-	736	770
ŏ	7	Í	748	603	î	i	6 945	887	î	13	ō 11	86	1197	ź	10	-5	234	287	3	8	1	864	861
ő	5	-í	681	623	1	2	2 4616	4236	1	15 -	-1 2 -2 4	98 75	292	2	10 10	Ť	821 368	310	3	9	-3	503 260	468 202
8	5	- 7	659 573	587	1	3 -	5 2869 2 41C	2798 408	2	ŝ	2 18	26	1892 956	2	11	ŝ	779 397	773 363	3	9	6	1414	1431
ő	6	-3	278	252 199	1	3	1 1745 4 1055	1761 1658	2	ĩ	8 4 1 5	87 53	350 624	2	12 · 12	2	268 758	269 765	3	10	-7	1156 503	455
8	6	3	4835 1103	4661 1059	1	31	0 512 3 576	530 1006	2	1	4 9	46 16	688 681	2	12	5	715	700 224	3	10	25	1138	1160
0	67	-4	261	203	1	4	0 1041	1043	2 2	2	0 16	90	1734	2	13 -	-21	285	1344	3	ii -	-5	783	773
ŏ	į	-1	438	426	ī	4	6 1198 4 834	1226	2	2.	6 3	C7	336	2	14	-3	322	389	ž	ii	i	750	814
ŏ	į	5	562	560	i	5 -	1 1804	1833	2	3	2 21	37	1932	3	č	31	183	1220	3	12	3	536	531
ŏ	į	-5	418	365	i	ŝ	5 1163	1049	2	3	8 27	72	2891	3	ŏ	2	374	324	3	13	ż	484	523
ò	8	4	655	613	1	6-	2 740	996	2	4	1 14	67	1429	3	i	5	501	482	4	10	4	594 338	229
8	9	-3	948	985	1	- ř	4 1446 6 654	1418 628	2	4	7 5	59 41	814 586	3	2	8	823 712	843 786	4	1	10 6	1229	1183
0	ş	3	1226	1206	1	7-7	3 2936 0 255	3090 181	2	5.	-3 5 0 19	30 27	539 1958	3	2	4 1 10	481	1474 369	4	1	9	467 2863	517 3044
ô	10 10	-1	2053 749	2040 765	1	;	3 339 6 1831	345 1795	2	5	32	18 99	133 699	3	3	3 1	420 840	1375 814	- 1	2	5	1328	136C 302
8	10 10	25	2326	2343	1	7 8 -	9 ACO 4 1963	603 2014	2	5	93	26 36	163 216	3	3	6 1	408	1032	:	3	14	831	873 1713
Ö	11	1	913	915	ĩ	8 -	1 459	465	22	ه	2 10	84	564	3		-i-1 2 2	385	1607		3	7	296	325
4	4	3	794	823	5	1	4 647	599	5		-3 3	51	Z 94	6	, 9	3	538	461		5	3	701	709
1	4	-1	561	592	5	ž	3 4067	4264	5	11	3 9	17	777	6	10	-1	838	866	Ĭ	5	6,	648	630
÷	5	2	527	493	5	3	2 922	975	6		6 26	29	2619	6	ij.	-2	336	477	8	6	5	487	504
Ŧ	6	-2	566	629	ŝ	-	1 321	289	ő	ĭ	5 9	óż	923	ź	ĭ	6	716	693	-	÷	4	1199	1243
-	6	4	4067	4034	5	-	7 2166	2282	6	2	4 5	04	484	ź	ž	5	779	834	8	9	-1	414	520
4	7	-3	689	721	5	3	3 233	265	6	3	3 7	81	772	Ī	3	7	879 390	3 86	8	10	-Z	295	333
4	ł	3	334 1194	332 1169	5	6 -	2 748	372	6	3	9 13	19 61	423	7	4	3	479	273	8	10	8	625	270 630
4	8	-1	835 370	845 292	5	- 7 -	5 332 2 1361	370 1440	6	4	25	97 74	645 712	;	5	2 1	332	1298 323	9	2 4	7	471 1118	471 1187
4	8	-2	833 325	846 271	5	7	1 1435	1435		4	8 8	37	883 1557	17	67	7	482	425 2462		6	3	332 419	282 414
÷.	10	,i	899 9.84	915	Š	7 8 -	7 459	453	6	Ś	4 4	05 32	460	7	Ť	-1	610 357	603 388	9	7	ź	249 457	280
4	10	3	1679	1684	Ś		0 582	495	ě	ž	3 1	93	82	į	9 10	-ż	281	211	9		ĩ	201	131
ł	ii	2	463	389	5	8	6 1849	1931	6	Į.	-1 2	72	281	į	ij	ž	508	1571	10	3	7	206	66
4	12	-2	1250	1070	5	9	4 461 5 630	476 615		.	2 5	47	556	4	1	7	396	382	10	-	5	817	621
4	13	-3	349	354	5	10 -	2 411	389	6	8	1 2	78 75	280 245	8	3	5 :	474	487	10	7	3	291	309
\$	13	3	252 516	276 463	5	10 10	1 715 4 245	772 192	- 4	9.	-3 2 0 25	0Z 46	330 2612	:	4	;	328 375	363 382	10		2	405	425

REA AND KOSTINER

	Position	10 ⁴ x	10 ⁴ y	104 <i>z</i>	B 11	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
Cu(0)*	3(a)	0	0	0	0.64(7)	B ₁₁	0.48(9)	$\frac{1}{2}B_{11}$	0	0
Cu(1)	18(f)	4295.3(8)	549.2(8)	2363(1)	1.35(4)	0.95(4)	1.40(4)	0.46(3)	0.06(3)	0.00(3)
1	18(f)	1530(1)	176(1)	3282(2)	0.70(4)	0.91(4)	0.67(4)	0.47(3)	0.48(3)	0.02(3)
D(1)	18(f)	2634(4)	337(4)	1870(8)	0.99(18)	1.10(17)	0.89(18)	0.58(15)	0.01(14)	0.03(14)
$\dot{\mathbf{x}}$	18(f)	8761(5)	9830(4)	1898(7)	1.21(18)	1.03(18)	1.13(19)	0.87(16)	-0.32(15)	-0.27(14)
) (3)	18(f)	8525(4)	895(4)	4972(7)	0.72(16)	0.81(16)	0.78(17)	0.38(14)	0.15(14)	0.15(14)
) (4)	3(b)	0	0 Ó	Ŧ	0.80(25)	B ₁₁	0.96(44)	$\frac{1}{7}B_{11}$	0	0

TABLE	Π
-------	---

* Occupancy factor = 0.78(1) (see text).

" Numbers in parentheses are estimated standard deviations in the last significant figure. The B's are defined by the general temperature factor $\exp[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]$.

The final anisotropic refinement, in which the occupancy of Cu(0) only was allowed to vary, yielded a residual R = 0.050 and $R_w = 0.059$. There were 564 data and 52 independently varied parameters for a data to parameter ratio of 10.8. The maximum secondary extinction correction was 2.2 % of $|F_c|$ for the $\overline{180}$ reflection. The calculated and observed structure factors are listed in Table I. The atomic positions and the anisotropic temperature factors are listed in Table II.

Discussion

The structure of Cu_{6.78}V₆O_{18.78} (α-copper vanadate) is based on a cubic close-packed array of oxygen ions, the stacking direction being the hexagonal caxis. There are three oxygen layers in the hexagonal unit cell, each ideally consisting of 19 oxygens. The vanadium and Cu(0) ions occupy distorted octahedral sites, while Cu(1) ions occupy distorted tetrahedral sites.

The vanadium octahedra are arranged in groups of six about the oxygen at the special position $00\frac{1}{2}$. Each octahedron shares edges with four other octahedra in the group, two at the same z-level and two in the adjacent level. These groups of vanadium octahedra are linked in chains along the threefold axis through edgesharing with the Cu(0) octahedron at the other $\overline{3}$ position on the axis. The upper three edges of this octahedron are shared by three vanadium octahedra of the group above, and the lower three edges by three vanadium octahedra of the group below. Two of these parallel chains are shown in Fig. 1, a stereoscopic view of the structure as seen along the *a* axis.

The vanadium and copper octahedra about one threefold axis are linked to octahedra about other threefold axes through corner-sharing with

Fig. 1. Stereoscopic view of the α -copper vanadate structure as seen in the x direction; z is towards the top of the page. (\odot) oxygen, (\bullet) vanadium, and (\bullet) copper. Groups of six vanadium octahedra may be seen at the lower left and to the right of the center. An octahedral copper, Cu(0), is seen above the group at left linking it to another group of vanadium octahedra above. Two spiral chains of Cu(1) tetrahedra may also be seen: one just to the left of center in which tetrahedra point upward, and one at the far right in which the tetrahedra point downward.

FIG. 2. Idealized layer by layer representation of the α -copper vanadate structure as viewed down the *c*-axis. The numbers in the legend are heights in fractional units of *c*. (\triangle) Cu(1) tetrahedra which point downward; (\triangle) Cu(1) tetrahedra which point upward.

copper tetrahedra. The copper atoms are very close to, but not on, the threefold screw axis, so that the copper tetrahedra occur in cornerlinked spiral chains parallel to the axis. These corner linkages can also be seen in Fig. 1.

A layer by layer diagram of the idealized structure is shown in Fig. 2, and bond distances, angles, and polyhedral edge lengths are given in Tables III and IV.

The structural evidence supports the valence distribution Cu^{2+} , V^{4+} . If the oxygen bound to six vanadium atoms, O(4), is examined in the light of Pauling's electrostatic valence rules (10) assuming V^{4+} and Cu^{2+} , a charge of -4 (an excess negative charge of 2) is found to reside here. To our knowledge this excess is larger than for any oxygen in any other compound (11). Although the anomalously long V-O(4) bond

compensates for this excess charge at O(4), vanadium as V^{5+} would render the situation intolerable. Furthermore, the assignment of a +5 oxidation state to the vanadium would leave univalent copper in a fully occupied tetrahedral site, which would be highly unlikely.

One might also consider the vanadium as V³⁺ if it is recognized that hydrogen could be incorporated into the structure on a general position as the result of the hydrothermal preparation. A complete difference Fourier synthesis, however, showed no areas of residual electron density corresponding to more than 0.2 electrons. Furthermore, the bond distances clearly indicate a higher oxidation state, as follows: The average V-O bond distance is 1.933 Å, which gives an ionic radius of 0.55 Å when 1.38 Å is subtracted for the oxygen radius. Shannon and Prewitt (9) give ionic radii for the six-coordinated ions as follows: V³⁺, 0.64; V⁴⁺, 0.59; V⁵⁺, 0.54 Å. Hence the vanadium in this structure is obviously V^{4+} or V^{5+} , and V^{5+} has been ruled out. The final formulation, then, is $Cu_{6.78}V_6^{4+}O_{18.78}$.

Divalent copper ion is usually found in a distorted octahedral, square planar, square pyramidal or triangular bipyramidal coordination. α -Copper vanadate is one of the few examples of Cu²⁺ in a tetrahedral coordination. The spinels CuCr₂O₄ (12) and CuCo₂O₄ (13) have been shown to contain tetrahedral Cu²⁺ as does the halide Cs₂CuCl₄ (14). Our calculation of the average tetrahedral Cu–O bond distance in CuCr₂O₄ (1.94 Å) is in good agreement with the average value for Cu(1)–O in α -copper vanadate (2.003 Å).

The structures of a series of copper-vanadium bronzes— β -Cu_xV₂O₅, 0.26 $\leq x \leq 0.64$ (15); ϵ -Cu_xV₂O₅, 0.67 $\leq x \leq 0.86$ (15); Cu_xV₄O₁₁, x = 1.82 (16)—have been determined and are based on (V₂O₅)_n or (V₄O₁₁)_n networks with the copper atoms located in partially occupied highly distorted four-, five-, and six-coordinated sites between the layers. An analysis (17) of their electrical and magnetic properties concludes that the copper is present in the +1 state in the Cu_xV₂O₅ compounds and as a mixture of Cu⁺ and Cu²⁺ in Cu_xV₄O₁₁ (16). It should be noted that there is no structural relationship between these vanadium bronzes and α -copper vanadate.

 α -Copper vanadate was originally formulated as "CuVO₃" with a region of nonstoichiometry corresponding to the formula CuVO_{3-x} ($x \le$ 0.20) (2). Unfortunately, the supporting experimental details for this formulation are sketchy,

REA AND KOSTINER

TABLE III

BOND DISTANCES, BOND ANGLES, AND POLYHEDRAL EDGE LENGTHS FOR METAL POLYHEDRA⁴

	Distance (Å)	Angle (°)	Edge length (Å)
i. Cu(0) polyhedron ^b			
$3 \times Cu(0) - O(2)$	2.021(5)		
$3 \times Cu(0) - O(2')$	2.021(5)		
$3 \times O(2)$ -Cu(0)-O(2)		79.7(2)	2.590(8)
$3 \times O(2')-Cu(0)-O(2')$		79.7(2)	2.590(8)
$6 \times O(2)-Cu(0)-O(2')$		100.3(2)	3.10(1)
$3 \times O(2)-Cu(0)-O(2')$		180	
ii. Cu(1) polyhedron ^b			
Cu(1)-O(1')	2.039(6)		
Cu(1)-O(1)	2.044(5)		
Cu(1)-O(2)	1.966(5)		
Cu(1)–O(3)	1.962(5)		
O(1')-Cu(1)-O(1)		100.5(2)	3.139(5)
O(1')-Cu(1)-O(2)		105.4(2)	3.186(8)
O(1')-Cu(1)-O(3)		108.3(2)	3.243(8)
O(1)Cu(1)O(2)		112.4(2)	3.333(7)
O(1)-Cu(1)-O(3)		107.5(2)	3.230(7)
O(2)-Cu(1)-O(3)		120.8(2)	3.416(7)
iii, V polyhedron ^c			
V-O(1)	1.670(5)		
V-O(2)	1.950(5)		
V-O(2')	2.003(5)		
V-O(3)	1.836(5)		
V-O(3′)	1.902(5)		
V-O(4)	2.234(1)		
O(1)-V-O(2)		98.7(2)	2.753(7)
O(1)-V-O(2')		98.0(2)	2.780(7)
O(1)-V-O(3)		102.6(2)	2.737(7)
O(1)-V-O(3')		101.7(2)	2.774(7)
O(2)-V-O(2')		81.9(3)	2.590(8)
O(2)-V-O(3)		92.8(2)	2.742(7)
O(2)-V-O(4)		79.3(2)	2.678(5)
$O(2^{\circ}) - V - O(3^{\circ})$		87.0(2)	2.688(7)
O(2′)–V–O(4)		78.2(1)	2.678(5)
O(3)-V-O(3')		91.0(1)	2.666(5)
O(3)-V-O(4)		81.2(1)	2.666(5)
O(3')-V-O(4)		79.8(1)	2.666(5)
U(1) - V - U(4)		175.9(3)	
U(2) - V - U(3')		157.9(2)	
U(2)-V-U(3)		139.3(2)	

" Numbers in parentheses are estimated standard deviations in the last figure.

^b The primed and unprimed oxygens occur in different close-packed layers of the structure.

^c The primed and unprimed oxygens are in the same layer and symmetry related.

COPPER VANADATE

IABLEIV	TA	BL	Æ	IV
---------	----	----	---	----

Distance (Å)	Angle (°)	Edge length (Å)
1.670(5) 2.039(6) 2.040(6)	132.7(3) 131.6(3) 95.7(2)	3.405(2) 3.387(2) 3.027(1)
2.021(5) 1.966(5) 1.950(5) 2.003(5)		
	118.0(3) 98.1(2) 96.4(2) 114.3(3) 117.6(2) 109.6(2)	3.417(1) 3.000(1) 3.000(1) 3.291(2) 3.395(2) 3.230(2)
1.962(5) 1.836(5) 1.902(5)		
	121.1(2) 122.4(3) 111.4(2)	3.308(2) 3.385(2) 3.088(2)
2.234(1) 2.234(1)	92.58(4) 92.58(4) 87.42(4) 180	3.230(2) 3.230(2) 3.088(2)
	Distance (Å) 1.670(5) 2.039(6) 2.040(6) 2.021(5) 1.966(5) 1.950(5) 2.003(5) 1.962(5) 1.836(5) 1.902(5) 2.234(1) 2.234(1)	Distance (Å) Angle (°) 1.670(5) 2.039(6) 2.040(6) 132.7(3) 131.6(3) 95.7(2) 2.021(5) 1.966(5) 1.950(5) 2.003(5) 118.0(3) 98.1(2) 96.4(2) 114.3(3) 117.6(2) 109.6(2) 1.962(5) 1.836(5) 1.902(5) 121.1(2) 122.4(3) 111.4(2) 2.234(1) 2.234(1) 2.238(4) 92.58(4) 87.42(4) 180

BOND DISTANCES, BOND ANGLES, AND POLYHEDRAL EDGE LENGTHS FOR OXYGEN POLYHEDRA^d

"Numbers in parentheses are estimated standard deviations in the last figure. "The primed and unprimed vanadiums are in the same layer and symmetry

related. ^c The primed and unprimed vanadiums are symmetry related and in different layers.

the only details being the conditions of preparation of the nonstoichiometric phases (heating in vacuum) and some powder X-ray diffraction patterns. We were able to index these admittedly poor patterns on the basis of our reported hexagonal unit cell for α -copper vanadate. There is a definite trend in the c/a ratio which decreases from 0.577 to 0.546 with increasing x for the formula CuVO_{3-x}. Realizing that powder X-ray diffraction has a sensitivity limitation of $\sim 5\%$ it is possible that this reported oxygen deficiency could actually be an exsolution of a copper oxide which would be difficult to detect at this level. Of course, the nonstoichiometry reported by Raveau, could be the result of oxygen loss but, due to the lack of experimental details, no definite

conclusion can be reached. However, realizing the nature of the chains of linked octahedra in the structure, the loss of copper as a copper oxide from the Cu(0) position would favor a decrease in the c/a ratio.

Acknowledgment

This work was supported in part by the Advanced Research Projects Agency through the Materials Science Center, Cornell University, Ithaca, NY 14850.

References

- 1. A. DESCHANVRES AND B. RAVEAU, C. R. Acad. Sci. 259, 3771 (1964).
- 2. B. RAVEAU, Rev. Chim. Miner. 4, 729 (1967).
- 3. B.L. CHAMBERLAND, J. Solid State Chem. 1, 138 (1970).
- 4. J. R. REA, P. W. BLESS, AND E. KOSTINER, J. Solid State Chem. 2, 446 (1972).
- 5. J. R. REA AND E. KOSTINER, J. Solid State Chem. 7, to appear (1973).

- W. R. BUSING, K. O. MARTIN, AND H. A. LEVY, Oak Ridge National Laboratory, ORNL-TM-305, Oak Ridge, TN (1962).
- D. T. CROMER AND J. B. MANN, Acta Crystallogr., Sect. A 24, 321 (1968).
- W. H. ZACHARIASEN, Acta Crystallogr. 23, 558 (1967); Sect. A24, 324 (1968).
- 9. R. W. SHANNON AND C. T. PREWITT, Acta Crystallogr., Sect. B25, 925 (1969).
- L. PAULING, "The Nature of the Chemical Bond," 3rd ed., Cornell Univ. Press, Ithaca, New York (1960).
- 11. W. H. BAUER, Trans. Amer. Crystallogr. Ass. 6, 129 (1970).
- 12. E. PRINCE. Acta Crystallogr. 10, 554 (1957).
- 13. I. RASINES, J. Appl. Crystallogr. 5, 11 (1972).
- 14. L. HELMHOLTZ AND R. F. KRUH, J. Amer. Chem. Soc. 74, 1176 (1952).
- 15. J. GALY, D. LAVAUD, A. CASALOT AND P. HAGEN-MULLER, J. Solid State Chem. 2, 531 (1970).
- J. GALY AND D. LAVAUD, Acta Crystallogr., Sect. B27, 1005 (1971).
- 17. A. CASALOT, D. LAVAUD, J. GALY, AND P. HAGEN-MULLER, J. Solid State Chem. 2, 544 (1970).